Materiały stosowane w elektrotechnice

Ten artykuł rzuca światło na cztery ważne kategorie materiałów stosowanych w elektrotechnice. Kategorie to: 1. Materiały stosowane w elektrotechnice 2. Materiały używane do prowadzenia energii elektrycznej 3. Materiały izolacyjne 4. Materiały stosowane do wzmacniania pól magnetycznych.

Inżynieria elektryczna: kategoria nr 1. Materiały stosowane w elektrotechnice:

Materiały stosowane w elektrotechnice można podzielić na cztery ważne kategorie, w zależności od ich zastosowania:

(a) Materiały używane do przewodzenia energii elektrycznej,

(b) Materiały użyte do izolacji,

(c) Materiały stosowane do wzmacniania pól magnetycznych,

(d) Materiały użyte do wykonania podpór, osłon i innych części mechanicznych oraz uzbrojenia.

Materiały stosowane w urządzeniach elektrycznych powinny być takie, które przewodzą prąd, a także niektóre, które izolują. Prąd elektryczny może płynąć efektywnie tylko dzięki ścieżce wykonanej dla niego z materiałów, które dobrze przewodzą prąd. Obwód elektryczny może być kontrolowany tylko wtedy, gdy prąd jest dobrze związany ze ścieżką przewodzenia dzięki skutecznej izolacji.

Większość energii elektrycznej dostarczanej do kopalni lub powiedzianej w jakiejkolwiek innej branży jest wykorzystywana w urządzeniach takich jak silniki, transformatory, przekaźniki, dzwonki itp., Które w rzeczywistości działają poprzez magnetyczny efekt prądu elektrycznego.

Wydajność takiego aparatu zależy w dużym stopniu od zastosowania materiałów na rdzenie i części biegunowe, które wzmacniają pola magnetyczne powstające, gdy prąd płynie w uzwojeniach urządzenia.

Faktem jest, że prawie wszystkie urządzenia elektryczne są zamknięte w jakiś sposób, chociaż obudowy są różne od siebie. Z pewnością nie może być tak, że wszystkie obudowy będą takie same. W rzeczywistości konstrukcja obudowy zależy od zastosowania sprzętu, a także od środowiska, w którym będzie on zainstalowany.

Poza tym w silnikach i rozdzielnicach znajduje się wiele ruchomych części, które wymagają specjalnie dobranych materiałów, uwzględniając cechy konstrukcyjne danego elementu. Dlatego widzimy, że wybór materiałów do sprzętu elektrycznego powinien być wykonany z wielką starannością, przemyśleniami i obliczeniami.

Inżynieria elektryczna: kategoria nr 2. Materiały stosowane do prowadzenia elektryczności:

Materiały, z których wykonane są obwody elektryczne są wybierane przede wszystkim ze względu na łatwość, z jaką przewodzą prąd. Jednak łatwość przewodzenia nie jest jedynym czynnikiem. Wiele części obwodu musi mieć właściwości mechaniczne, takie jak wytrzymałość na rozciąganie lub odporność na zużycie, lub ciągliwość lub wytrzymałość na ściskanie itp.

Niektóre rodzaje aparatów będą wymagały przewodzących materiałów, które reagują na przepływ prądu, takich jak żarniki stosowane w lampach elektrycznych. Wybrano inne materiały, ponieważ oferują one odporność na prąd, np. Te stosowane do wytwarzania rezystorów i rezystorów, które kontrolują prąd w obwodzie. Niektóre z najbardziej użytecznych materiałów przewodzących, które znajdują się wśród metali stosowanych w sprzęcie elektrycznym, podano poniżej.

Miedź:

Materiał ten jest najczęściej używany do tworzenia ścieżek prądowych w obwodach elektrycznych. Bardzo łatwo przewodzi prąd elektryczny, a jego właściwości fizyczne umożliwiają jego stosowanie na wiele sposobów. Jest to miękki metal, dzięki czemu można go przeciągnąć do prętów i drutów, można go również wygiąć i ukształtować zgodnie z wymaganiami. Można go łączyć poprzez lutowanie, lutowanie, spawanie lub spawanie.

Miedź służy do uzwojenia urządzeń elektromagnetycznych, np. Silników, generatorów, transformatorów i przekaźników. Większość cewek wykonana jest z drutu miedzianego, ale uzwojenie przeznaczone do przenoszenia ciężkich prądów może być uformowane z kształtowników miedzianych. Prowadzące segmenty komutatora są zwykle wykonane z miedzi, ale mają szczególną konstrukcję i kształt, wymagane do przenoszenia określonego prądu znamionowego.

Ponownie widzimy miedź w różnych formach, podobnie jak nici są używane w środku kabli, które niosą prąd. W tym przypadku ważna jest również kwestia aktualnej nośności. W projektowaniu kabli projektant musi myśleć z wielką starannością i kalkulacją.

Teraz, jeśli spojrzymy na konstrukcję szyn zbiorczych i przełączymy styki, znowu widzimy, jak ważną rolę odgrywa miedź jako przewodnik prądowy. Czasami te styki muszą przenosić prąd w zakresie kilku tysięcy amperów, a dla tych styków i szyn zbiorczych przekroje i formy są wykonane z wymaganego przekroju zgodnie z projektem.

Mosiądz:

Ten materiał, który w rzeczywistości jest stopem miedzi i cynku, jest również szeroko stosowany w sprzęcie elektrycznym, chociaż wiemy, że mosiądz nie przewodzi elektryczności ani miedzi, ale jest trudniejszy niż miedź i może łatwiej wytrzymać zużycie i uszkodzenia .

Podobnie jak miedź, można ją również przeciągnąć na druty, pręty i specjalne formularze do różnych zastosowań. Można to również łączyć poprzez lutowanie, lutowanie, skręcanie i nitowanie. Stosuje się go do wtyczek, gniazd, szyn łączących, zacisków, styków łukowych w stycznikach o mniejszych wartościach znamionowych oraz do śrub i nakrętek do elementów pod napięciem.

Aluminium:

Aluminium jest również dobrym przewodnikiem elektryczności. Aluminium jest w rzeczywistości lekkim metalem i nie jest tak mocne jak miedź. Problem z tym metalem polega na tym, że łączenie jest bardzo trudne, chociaż łączenie za pomocą śrub, a nawet lutowanie za pomocą specjalnego spawania łukiem argonowym jest z powodzeniem możliwe.

Stosowany jest głównie w przypadku odlewanych wirników silników klatkowych. Jest również stosowany w liniach napowietrznych i kablach podziemnych. Podobnie jak miedź, aluminium można również wyciągnąć w postaci prętów, prętów i dowolnej specjalnej formy do zastosowania w różnych urządzeniach elektrycznych.

W przypadku stosowania w kopalniach węgla, użycie aluminium lub stopów aluminium jako materiału skrzyni dla dowolnego sprzętu elektrycznego do użytku podziemnego, takiego jak wiertarki, oprawy oświetleniowe itp. Jest obecnie zabronione ze względu na ryzyko iskrzenia zapalnego, jeżeli sprzęt uderzony jest ostrym uderzeniem przez inny kawałek znacznie twardszego materiału lub wyposażenia, takiego jak łuk stalowy, szyna rurowa lub inne twardsze materiały.

Constantan (Eureka) i Magnanin:

Constantan to stop miedzi i niklu, a manganina to stop miedzi, niklu i manganu. Oba te stopy oferują wyższą odporność na prąd elektryczny niż większość innych metali wykorzystywanych jako przewodniki, a ich głównym zastosowaniem jest budowa rezystancji i reostatów wykorzystywanych głównie jako elementy grzejne.

Wolfram:

Metal ten jest stosowany głównie do żarników żarówek elektrycznych. Ma wysoką temperaturę topnienia i może, w wyniku przepływu prądu elektrycznego, być ogrzewany (w szklanej rurce wypełnionej gazem) do temperatury, w której będzie emitować jasne światło.

Cynk, ołów, żelazo i nikiel:

Metale te są stosowane w elektrodach akumulatorów pierwotnych i wtórnych.

Rtęć:

Ciekły metal stosowany jako przewodnik w wielu typach przełączników rtęciowych, automatycznych wycięć i prostownikach łukowych z rtęcią. Powyżej omawialiśmy przewodniki metaliczne, które przewodzą prąd, ale są również przewodniki niemetaliczne, które przewodzą prąd równie dobrze i są bardzo często wykorzystywane w elektrotechnice.

Węgiel:

W porównaniu z metalami, węgiel oferuje wysoką odporność na prąd elektryczny. Ma jednak ważną właściwość, ponieważ jest samosmarujące (grafit, forma węgla, jest stosowany jako środek smarny w niektórych maszynach). Węgiel jest zatem materiałem najczęściej stosowanym w szczotkach silnikowych i generatorowych.

Szczotki węglowe mogą utrzymywać stabilny, ale płynny kontakt z obrotowym komutatorem lub ślizgaczem, nie powodując nadmiernego nagrzewania lub szybkiego zużycia.

To rzeczywiście jest cudowna właściwość węgla, niemetalicznego przewodnika, którego żaden metaliczny przewodnik nie może być równy. W rzeczywistości żaden kontakt metaliczny nie zadziałałby w miejsce szczotek węglowych używanych w ślizgaczach lub komutatorach.

Jednak szczotki węglowe zwykle zawierają niewielką ilość miedzi, aby poprawić ich przewodnictwo. Węgiel jest również niezwykle przydatny do wytwarzania stałych i zmiennych rezystorów, a także jako elektrody do akumulatorów galwanicznych.

Płyny:

Z teorii i praktyki wiemy, że niemetaliczne ciecze, które przewodzą prąd, w rzeczywistości robią to w procesie elektrolizy. W porównaniu z metalami oferują wysoką odporność na prąd elektryczny. Elektrolity pierwotnych i wtórnych ogniw używanych w bateriach są cieczami, które przewodzą przez elektrolizę.

A te ciecze obejmują rozcieńczony kwas siarkowy i roztwory salomoniaku (chlorek amonu) i wodorotlenek potasu. Ciecz przewodząca jest również czasami stosowana jako opór do dużych obciążeń dla silników rozruchowych o wysokiej wartości znamionowej. W rzeczywistości rozwiązanie sody oczyszczonej w wodzie, na przykład, zapewnia element oporowy w płynnych rozrusznikach silników.

Elektrotechnika: Kategoria # 3. Materiały izolacyjne:

Materiały izolacyjne służą do ograniczania lub kierowania prądów elektrycznych do obwodu, przez który są zaprojektowane. Gdyby nie było izolacji, prąd natychmiast znalazłby najbliższą drogę do ziemi i zagroziłby całemu systemowi.

W rzeczywistości skuteczność i wydajność materiałów izolacyjnych zależy nie tylko od wydajnego działania sprzętu elektrycznego i instalacji elektrycznej jako całości, ale także od bezpieczeństwa życia osób, które z nim pracują.

W rzeczywistości izolacja stanowi ratunkową ochronę zarówno dla sprzętu, jak i dla ludzi, którzy używają tego sprzętu elektrycznego. Dlatego wybór klasy i gatunku izolacji dla sprzętu jest podstawowym zadaniem inżyniera elektryka, który musi zaprojektować sprzęt, który będzie stosowany w przemyśle, czy to w kopalni, czy w hucie.

Obecnie, zwiększając klasę izolacji, a tym samym zwiększając pojemność izolacji, aby wytrzymać znacznie wyższą temperaturę bez jakiegokolwiek pogorszenia się materiałów izolacyjnych, ocena sprzętu elektrycznego, takiego jak silniki i transformatory, rozdzielnice, a także szyny zbiorcze, jest niewiarygodnie zwiększona w taka sama rama sprzętu.

Jednak w użyciu jest wiele rodzajów materiałów izolacyjnych. Wybór konkretnego materiału izolacyjnego do określonego celu jest określony przez napięcie obwodu, który ma być izolowany, oraz wymagania fizyczne i środowisko sprzętu. Materiały, które izolują żywy przewodnik od ziemi lub które izolują jeden żywy przewodnik od innego, ma potencjalną różnicę nałożoną na niego.

Chociaż prąd nie przepływa przez materiały izolacyjne, materiał poddawany jest olbrzymiemu odkształceniu, znanemu jako szczep dielektryczny. Jeśli różnica potencjałów jest większa, ten szczep dielektryczny zwiększa się, a różnica potencjałów może być osiągnięta, gdy odkształcenie staje się zbyt duże.

Izolacja następnie rozpada się i przepływa przez nią prąd. A gdy izolacja się zepsuje, jej właściwości izolacyjne są trwale uszkodzone. Materiały izolacyjne, które mogą wytrzymać wysokie napięcia, mają wysoką wytrzymałość dielektryczną i są niezbędne do izolacji obwodów wysokiego i średniego napięcia.

W obwodach niskiego napięcia i obwodów sygnałowych wytrzymałość dielektryczna nie jest tak ważna, a materiały izolacyjne mogą być wybrane przede wszystkim ze względu na łatwość ich wytwarzania lub przystosowania, lub bezpieczne obchodzenie się z urządzeniami, ponieważ nawet mały wstrząs elektryczny może spowodować śmierć przez całe życie.

Teraz oprócz właściwości izolacyjnych należy wziąć pod uwagę inne cechy materiałów. Dla niektórych celów, np. Izolacji kabli, materiały muszą być elastyczne i nie powinny tracić swoich właściwości izolacyjnych podczas rozciągania lub zniekształcania.

Wytrzymałość mechaniczna jest również bardzo ważna dla wielu celów, szczególnie dla silnika używanego do przewozu, gdzie czasami prędkość silnika osiąga prawie dwukrotność prędkości.

W takich przypadkach, jeśli wytrzymałość mechaniczna materiału izolacyjnego nie jest wystarczająco mocna, przewody i nawet przewodniki (które są związane materiałami izolacyjnymi) mogą odlecieć, powodując poważne uszkodzenia nie tylko silnika, ale także instalacji.

Dlatego wytrzymałość mechaniczna jest ważna dla wielu celów, ponieważ wytrzymałość dielektryczna może być osłabiona, jeśli części materiału izolacyjnego pękną lub pękną. Mechaniczne uszkodzenie izolacji jest przyczyną awarii elektrycznej. Czasami, jeśli te uszkodzenia mechaniczne nie zostaną zauważone na czas, załamanie się wyborów może mieć bardzo poważny charakter.

Dlatego konieczna jest regularna i dokładna kontrola izolacji, aby sprawdzić, czy zaczęło się pogarszać, starzeć lub pękać, lub jej wartość IR spadła znacznie poniżej dopuszczalnego limitu dla poszczególnych zastosowań. W rzeczywistości żywotność izolacji decyduje o żywotności sprzętu elektrycznego. Dlatego prowadzone są regularne badania dotyczące poprawy izolacji (patrz tabela 2.2).

Rodzaje izolacji:

Suche powietrze:

Suche powietrze jest w rzeczywistości ważnym i wydajnym izolatorem. Na przykład wiemy, że dwa żywe gołe przewody są oddzielone powietrzem i skutecznie izolowane od siebie. Najlepszym tego przykładem są szyny zbiorcze panelu sterowania oraz silnik i transformator dla terminali. Jednak izolacja powietrzna ma limit ze względu na wytrzymałość dielektryczną.

Dlatego też, jeśli nadmierne wyższe napięcie niż napięcie znamionowe jest przekazywane przez te zaciski, wytrzymałość dielektryczna ulegnie zerwaniu, a zatem spowoduje uszkodzenie. Dlatego projektując komorę szyny zbiorczej i skrzynkę zaciskową, projektant musi przejść według standardowego sprawdzonego odstępu między dwoma nagimi słupkami pod napięciem, zgodnie ze standardową specyfikacją indyjską lub brytyjską, zgodnie z doświadczeniem i teorią.

W rzeczywistości, gdy występuje nadmierne wysokie napięcie, powietrze pomiędzy dwoma żywymi prętami jonizuje i powstaje łuk w przestrzeni pośredniej, która jest nazywana linią do linii, a następnie do ziemi, tj. Całkowite zwarcie. Kolejnym wielkim przykładem awarii izolacji powietrznej jest występowanie błyskawicy.

Gumowy:

Jest to również izolator, ale nie jest w stanie wytrzymać zbyt wysokiej temperatury. Jako elastyczny materiał jest używany głównie do wewnętrznego pokrywania przewodów o różnych rozmiarach. W rzeczywistości mieszanina gumowana odgrywa ważną rolę w produkcji kabli.

Guma wulkanizowana:

Ta przetworzona guma jest w rzeczywistości znacznie twardsza niż czysta guma, chociaż ma niską wytrzymałość dielektryczną.

Plastikowy:

Tworzywa sztuczne we wszystkich swoich różnorodnych formach są coraz częściej wykorzystywane do materiałów izolacyjnych.

Jest ich zbyt wiele, by wymienić je pojedynczo w tej książce, ale jako przydatny przewodnik wymienić można niektóre z materiałów zastępujących gumę jako środek izolacyjny do przewodów i kabli:

a) PVC (polichlorek winylu)

b) Neopron

c) Kauczuki butylowe

d) EPR (Ethyline - kauczuk propylenowy)

e) CSP (polichlan chlorosulfonowy)

Bawełna i lakier, włókna szklane itp .:

We wcześniejszych projektach przewody silników i transformatorów izolowano głównie bawełną i lakierami. Obecnie jednak w większości przypadków zostały one zastąpione przez bardziej skuteczne i modne materiały izolacyjne, takie jak emalie na bazie żywicy, włókna szklane, azbest itp.

Obecnie izolacyjne folie na bazie żywic mają tendencję do zastępowania bawełny i lakieru do izolacji uzwojeń. W rzeczywistości te folie są łatwiejsze do nałożenia, a także są bardziej skutecznie odporne na wilgoć. Jednak przed użyciem tych folii izolacyjnych uzwojenia muszą być idealnie wypalone, aby pozbyć się wilgoci.

Impregnowany olejem papier:

Papier impregnowany olejem izolacyjnym ma również wysoką wytrzymałość dielektryczną, powszechnie stosuje się go do izolowania przewodów kabli wysokiego napięcia, które nie muszą być elastyczne. Papier bardzo łatwo wchłania wilgoć, dzięki czemu można go używać wyłącznie w sprzęcie zaprojektowanym w sposób zapobiegający dostawaniu się wilgoci, np. Ołowianych kabli o powłoce.

Z tego powodu, gdy jakikolwiek papierowy kabel izolowany jest przecięty, jego koniec musi być natychmiast uszczelniony, aby chronić go przed wilgocią.

Olej izolacyjny:

Olej izolacyjny ma wysoką wytrzymałość dielektryczną i dlatego jest stosowany do izolowania niektórych typów urządzeń wysokiego napięcia. Transformatory i skraplacze podłączone do obwodów wysokiego napięcia są zwykle zanurzone w oleju izolacyjnym. Olej jest często używany jako czynnik chłodzący, a także jako izolacja.

Dlatego ma dwie ważne funkcje w sprzęcie elektrycznym. Dobrym przykładem jest stosowanie oleju izolacyjnego w transformatorze. Styk niektórych aparatów wysokiego napięcia działa na olej izolacyjny, który oprócz izolacji izoluje łuk wyciągnięty. Gdy części stykowe są złożone, olej izolacyjny jest cienki i wysoce łatwopalny.

Po podgrzaniu paruje, a ponieważ opary zawierają wodór, sprzęt napełniony olejem musi być dobrze zabezpieczony przed niebezpieczeństwem wybuchu.

Pyrochlor:

Ten rodzaj cieczy izolacyjnej jest obecnie w użyciu. Ciecz ta jest w rzeczywistości cięższa i ma większą wytrzymałość dielektryczną niż stosowany regularnie olej transformatorowy. Ale trudność z tym płynem polega na regularnej manipulacji, ponieważ staje się gęsta, gdy jest zimna i staje się cieńsza przy wzroście temperatury. Ten rodzaj płynu jest najczęściej używany w Rosji.

Porcelana:

Porcelana ma bardzo wysoką wytrzymałość dielektryczną i dlatego jest powszechnie stosowana jako izolator w obwodach wysokiego napięcia. Będąc formą gliny, musi być uformowany w kształt wymagany podczas produkcji i po wypaleniu nie może być obrabiany.

Jest on stosowany głównie do izolatorów podtrzymujących przewody podstawowe, np. Wsporników do szyn zbiorczych i przewodzących części rozdzielnic żelaznych oraz skrzynek przyłączeniowych. Izolatory do linii zewnętrznych są również wykonane z porcelany.

Mika:

Twarda krucha substancja mineralna stosowana jako izolacja szczelinowa do uzwojenia silnika i do izolowania pomiędzy segmentami komutatorów. Jest odporny na wysokie temperatury i nie przepuszcza wilgoci. Inne formy izolacji szczelinowej składają się z materiałów takich jak papiery lakierowane, włókna szklane, laminat azbestowy i najnowszy millinex.

Płyta izolacyjna:

Istnieją różne rodzaje płyt izolacyjnych i izolacje kształtowe. Prasa pahn, tufolit i tarczycy są powszechnie stosowane w sprzęcie elektrycznym. Ich zastosowania obejmują tablice zaciskowe, kształtki do cewek, izolację szczelinową dla uzwojeń silnika i transformatora oraz szczotki izolacyjne i podkładki.

Ebonit:

Forma bardzo twardej wulkanizowanej gumy, która przypomina wyglądem heban z drewna. Jego zastosowanie obejmuje tablice zaciskowe oraz szczotki izolacyjne i podkładki.

Permali drewno:

Jest to specjalny rodzaj drewna o lepszej wytrzymałości dielektrycznej niż zwykłe drewno. Mają więcej odporności na wilgoć. Są one ogólnie stosowane do tablic kontaktowych, separatorów, wsporników terminali przepustowych.

Taśma izolacyjna:

Taśma izolacyjna służy do owijania cewek lub przewodów podstawowych w obudowach, np. W obudowie rozdzielnicy i silnika. Czasami służy do naprawy lub wymiany uszkodzonej izolacji. Taśmy są wykonane z wulkanizowanych włókien (np. Słoniowce), z lakierowanej bawełny, jedwabiu lub tkaniny z włókna szklanego (np. Z taśmy Empire) lub z klejonego miką (Micanite).

Taśmy z tworzyw sztucznych (PVC) lub nylonowe taśmy o właściwościach elektrycznych są obecnie powszechnie stosowane w szerokim zakresie obwodów niskiego, średniego i wysokiego napięcia.

Związek izolacyjny:

Mieszanka izolacyjna służy do napełniania skrzynek połączeniowych, gotowych łączników i obudów zacisków. Wiele związków jest opartych na bitumie i musi być ogrzewane i wlane do komory, aby można je było natychmiast napełnić na gorąco. Zimne związki wylewające składające się z mineralnego lub syntetycznego oleju z utwardzaczem są obecnie stosowane szerzej.

Inżynieria elektryczna: kategoria # 4. Materiały stosowane do wzmacniania pól magnetycznych:

Silniki, transformatory, przekaźniki, które są w rzeczywistości urządzeniami elektromagnetycznymi mają swoje cewki nawinięte na rdzeniach. Materiały, z których wykonane są te rdzenie dobiera się ze względu na ich zdolność do wytwarzania silnego pola magnetycznego, gdy namagnesowane przez prąd płynący w uzwojeniu. Takie materiały są opisane jako mające dużą przenikalność magnetyczną.

Jednak wysoka przenikalność magnetyczna nie jest jedynym wymaganiem dla podstawowych materiałów. Materiały muszą być zdolne do bardzo szybkiego namagnesowania i utraty magnetyzmu tak szybko, jak to możliwe, po tym jak magnes przestanie płynąć.

Wymóg ten jest szczególnie ważny w przypadku aparatów prądu przemiennego, takich jak transformatory, gdzie rdzenie są namagnesowane i rozmagnesowywane sto razy na sekundę. Opóźnienie reakcji na zmiany prądu magnesowania nazywa się hysterizami, wszystkie materiały magnetyczne podlegają histerii, chociaż w niektórych przypadkach czynnik ten jest bardzo mały.

Innym ważnym wymaganiem materiału rdzenia jest to, że powinny zatrzymywać jak najmniej magnetyzmu, kiedy to możliwe, gdy prąd magnesujący przestanie płynąć. Wszystkie materiały magnetyczne zachowują pewien stopień magnetyzmu, gdy zostały umieszczone w polu magnetycznym, ale materiały różnią się znacznie w ilości, jaką zachowują. Niska retencja wiąże się z niską histerią i odwrotnie.

Na przykład magnes trwały ma niezwykle wysoki współczynnik histerii i dlatego jest trudny do namagnesowania, gdy prąd magnesujący się zatrzymuje. Jednakże materiały rdzenia są łatwo namagnesowane i zachowują ledwo wykrywalną ilość magnetyzmu, gdy prąd magnetyzujący ustaje.

Dobre materiały rdzenia są zatem tymi, które mają wysoką przenikalność magnetyczną i niską histerezę. W rzeczywistości miękkie żelazo spełnia te wymagania i było kiedyś szeroko stosowane w przypadku rdzeni elektromagnetycznych.

Niektóre stopy żelaza okazały się jednak znacznie bardziej wydajne. Wśród popularnych obecnie stopów znajdują się stopy krzemu i żelaza (np. Lohys i Stalloys), stopy kobaltu i żelaza (Permendur) oraz stopy niklu i żelaza (Permalloy).

Rdzenie uzwojeń indukcyjnych, takich jak transformatory, silniki i generatory, są niezmiennie zbudowane z cienkich warstw metali (grubość od 0, 005 do 0, 007) zwanych warstwami, które są izolowane od siebie (cienkimi warstwami 0, 002 folii lakieru) i mocno skręcone ze sobą. Ta metoda konstrukcji jest przyjęta, aby zapobiec krążeniu prądów wirowych w rdzeniu.

Jednakże materiały rdzenia będące głównie metalem żelaznym są przewodnikami w polu magnetycznym, tak że emf jest generowany w nim, gdy występuje jakakolwiek zmiana siły pola. Jeśli rdzeń byłby solidny, istniałaby ścieżka o niskiej rezystancji umożliwiająca cyrkulowanie ciężkich prądów.

Gdyby pozwolono na cyrkulację, prądy wirowe wytworzyłyby pole magnetyczne w przeciwieństwie do prądu wytworzonego przez prąd magnesujący, a tym samym poważnie przegrzały. Izolacja pomiędzy laminowaniem zapobiega przepływowi prądów wirowych, laminacja układana jest w kierunku pola magnetycznego, tak aby zminimalizować wpływ na wytrzymałość samego pola.

Ramki, obudowy:

Żeliwo, stopy odlewów i blachy stalowe są zdecydowanie najczęściej stosowanymi materiałami do ram i obudów urządzeń elektrycznych wykorzystywanych w przemyśle wydobywczym. Twarde formowane tworzywo sztuczne jest używane do niektórych części mechanicznych, a żywica epoksydowa jest obecnie wykorzystywana do niektórych celów. Okna do montażu elektrycznego i inspekcyjnego używają ciężkiego szkła pancernego. Wysokiej jakości stale są stosowane do wałów silnika i powierzchni łożysk.